Hydromagnetic flow of fluid with variable viscosity in a uniform tube with peristalsis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 371461
(http://iopscience.iop.org/0305-4470/37/4/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.64
The article was downloaded on 02/06/2010 at 19:18

Please note that terms and conditions apply.

Corrigendum

Hydromagnetic flow of fluid with variable viscosity in a uniform tube with peristalsis Abd El Hakeem Abd El Naby, A E M El Misiery and I I El Shamy 2003 J. Phys. A: Math. Gen. 36 8535-8547

The previously published versions of equations (2.5), (2.6), (2.10) and (2.11) are incomplete. The corrected equations are as follows:

$$
\begin{align*}
& \frac{\partial \bar{P}}{\partial \bar{r}}=\frac{\partial}{\partial z}\left[\bar{\mu}(r)\left(\frac{\partial \bar{u}}{\partial \bar{z}}-\frac{\partial \bar{w}}{\partial \bar{r}}\right)\right]+2 \frac{\partial \bar{\mu}(\bar{r})}{\partial \bar{r}} \frac{\partial \bar{\mu}}{\partial \bar{r}} \tag{2.5}\\
& \frac{\partial \bar{P}}{\partial \bar{z}}=-\frac{1}{\bar{r}} \frac{\partial}{\partial \bar{r}}\left[\bar{\mu}(r) \bar{r}\left(\frac{\partial \bar{u}}{\partial \bar{z}}-\frac{\partial \bar{w}}{\partial \bar{r}}\right)\right]+2 \frac{\partial \bar{\mu}(\bar{r})}{\partial \bar{r}} \frac{\partial \bar{\mu}}{\partial \bar{z}}-\sigma \mu_{e}^{2} H_{0}^{2} \bar{w} \tag{2.6}\\
& \frac{\partial P}{\partial r}=\delta^{2} \mu(r) \frac{\partial}{\partial z}\left(\delta^{2} \frac{\partial u}{\partial z}-\frac{\partial w}{\partial r}\right)+2 \delta^{2} \frac{\partial \mu(r)}{\partial r} \frac{\partial \mu}{\partial r} \tag{2.10}\\
& \frac{\partial P}{\partial z}=\frac{1}{r} \frac{\partial}{\partial r}\left[\mu(r) r\left(\frac{\partial w}{\partial r}-\delta^{2} \frac{\partial u}{\partial z}\right)\right]+2 \delta^{2} \frac{\partial \mu(r)}{\partial r} \frac{\partial \mu}{\partial z}-M^{2} w \tag{2.11}
\end{align*}
$$

The terms that were omitted are negligible under our approximation $(\delta=0)$ and do not affect our calculations.

In equation (3.2), \bar{h} should read as \bar{h}^{2}, as follows:

$$
\begin{equation*}
\hat{Q}=\bar{q}+\pi c \bar{h}^{2} \tag{3.2}
\end{equation*}
$$

In equation (4.26), α^{2} should read as α, as follows:

$$
\begin{gather*}
w=\frac{\left(\mathrm{d} P / \mathrm{d} z-M^{2}\right)\left(I_{0}(M r)-I_{0}(M h)\right)}{M^{2} I_{0}(M h)}+\alpha\left\{\frac{\mathrm{d} P / \mathrm{d} z-M^{2}}{M^{3} I_{0}(M h)} \sum_{k=0}^{\infty} \frac{a_{k}(M r)^{2 k+3}}{2 k+3}\right. \\
\left.-\frac{\left[\mathrm{d} P / \mathrm{d} z-M^{2}\right] I_{0}(M r)}{M^{3}\left(I_{0}(M h)\right)^{2}} \sum_{k=0}^{\infty} \frac{a_{k}(M h)^{2 k+3}}{2 k+3}\right\} \tag{4.26}
\end{gather*}
$$

These are typographic errors and do not affect our calculations.
The text preceding equation (4.16) should read as: 'Differentiating equation (4.9) with respect to r yields'

